Information and Communications Technologies for Verticals
Grupo de Lectura: Reconocimiento de Patrones

Javier Preciozzi - Dirección Nacional de Identificación Civil

2 de Setiembre de 2015



#### Agenda

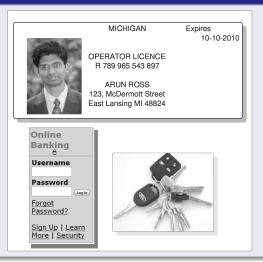
- Quienes somos
- Marco teórico: Basado en el libro "Introduction to Biometrics
  - A. Jain, A. Ross y K. Nandakumar"
- Caso de estudio: Dirección Nacional de Identificación Civil

#### Quienes somos

- Grupo de Tratamiento de Imágenes Instituto de Ingeniería Eléctrica (Facultad de Ingenería)
  - Alicia Fernández
  - Federico Lecumberry
  - Luis Di Martino (maestría)
  - Gabriel Lema (maestría)
- Dirección Nacional de Identificación Civil Ministerio del Interior
  - Javier Preciozzi
  - Luis Di Martino

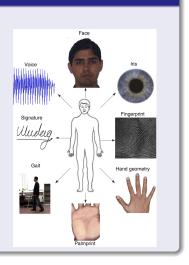


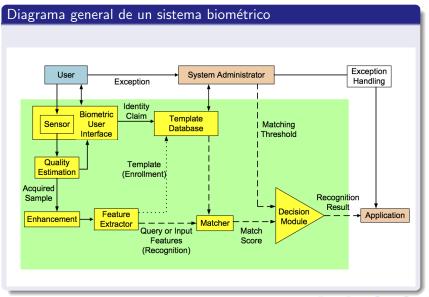
#### Antecedentes


- 2001 Convenio DNIC-FING
- 2005 CSIC: Fusión de información biométrica
- 2102 Proyecto de grado: Faceval Un sistema de reconocimiento facial
  - Primer premio en Ingeniería DeMuestra 2012
  - Primer puesto en concurso de proyectos de grado 2012-2013 organizado por la Academia Nacional de Ingeniería
- 2014 Maestría de Luis Di Martino: Estudio, implementación y validación de algoritmos de fusión biométrica
- 2014 Maestría de Gabriel Lema: Reconocimiento facial en condiciones no controladas (Faces in the Wild)
- 2015 Fondo María Viñas (ANII): Fusión biométrica: Aplicación a una base de identificación civil

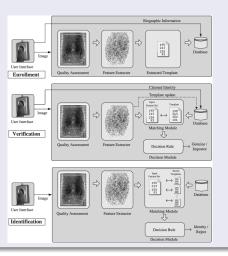


#### **Publicaciones**


- 2001: Performance evaluation of an automatic fingerprint classification algorithm adapted to a Vucetich based classification system A. Bartesaghi, A. Gómez, A. Fernández - International Conference on Audio-and Video-Based Biometric Person Authentification, Proceedings. Halmstad, Sweden2001
- 2004: Performance improvement in a fingerprint classification system using anisotropic diffusion G.
   Vallarino, G. Gianarelli, A. Gómez, A. Fernández, A. Pardo CIARP 2004. Puebla, México, 2004
- 2007: Aguará: An Improved Face Recognition Algorithm through Gabor Filter Adaptation C. Aguerrebere, G. Capdehourat, M. Delbracio, M. Mateu, A. Fernández, F. Lecumberry IEEE Workshop on Automatic Identification Advanced Technologies, Alghero, Italy 2007
- 2014: An a-contrario Approach for Face Matching L. Di Martino, J. Preciozzi, F. Lecumberry and A. Fernández International Conference on Pattern Recognition Applications and Methods 2014.
- 2014: Evaluation of a face recognition system performance's variation on a citizen passport database G.
   Lema, L. Di Martino, S. Berchesi, A. Fernández, F. Lecumberry and J. Preciozzi (CLEI- 2014).
- 2014: Face Matching with an A-Contrario False Detection Control L. Di Martino, J. Preciozzi, F. Lecumberry and A. Fernández - Journal on Neurocomputing, Elsevier.


#### Identificación




#### Sistemas biométricos

- Utilizan rasgos biométricos: huella dactilar, cara, iris, voz, etc.
- Características que se buscan:
  - Universal
  - Único
  - Permanente
  - Medible
  - Rápido
  - Aceptación
  - Robusto





#### Funcionalidades de un sistema biométrico



#### Performance de un sistema biométrico

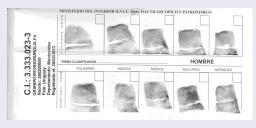
- FMR False Match Rate (o FAR: False Acceptance Rate): La probabilidad que dos muestras pertenecientes a dos personas distintas sean clasificadas como pertenecientes a la misma clase.
- FNMR False Non-Match Rate (o FRR: False Rejection Rate): La probabilidad que dos muestras pertenecientes a la misma persona distintas sea clasificada como que no pertenecen a la misma clase.
- ROC Receiver Operating Characteristic: Es la curva que se determina al graficar los verdaderos positivos contra los falsos positivos (FAR)

#### Dirección Nacional de Identificación Civil

Tiene por cometido esencial la identificación de las personas físicas que habitan el territorio de la República, otorgando la Cédula de Identidad de acuerdo a la documentación probatoria y a la confrontación dactiloscópica. La DNIC tiene además competencia para la emisión de pasaportes comunes.

# Datos básicos (agosto 2015)

- 35 oficinas distribuídas en todo el país
- Base de datos centralizada
- 5.623.107 registros de persona en la base de datos
- 3.543.383 personas con huellas dactilares en el sistema
- 3.700.966 personas con al menos una fotografías del rostro




#### Funciones biométricas

- Enrolamiento: 10 huellas dactilares y una fotografía (en breve, firma)
- Verificación de identidad: basado en huellas dactilares
- Identificación: basado en huellas dactilares

#### Enrolamiento

• Enrolamiento: Se toman en papel 10 huellas dactilares



• Se escanean, se cortan por dedo y se guardan en el sistema



#### Verificación de Identidad

- Se lleva a cabo en la renovación del documento
- El costo de aceptar un falso positivo es muy alto, por lo tanto se usará un FAR muy bajo

#### Módulos

- Sensores
- Extracción de características
  - Análisis de calidad
  - Segmentación de la imagen
- Clasificación (matcheo)
- Decisión

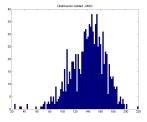


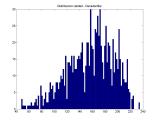
#### Sensores utilizados

# MorphoSmart 300






# Dermalog ZF1





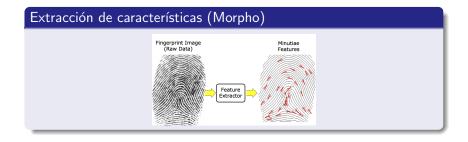

#### Extracción de características

Análisis de calidad para el dedo índice





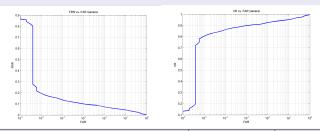
| Ficha papel | Media | Varianza |
|-------------|-------|----------|
| Pulgar      | 157   | 36       |
| Índice      | 121   | 35       |
| Medio       | 128   | 42       |
| Anular      | 120   | 43       |
| Meñique     | 94    | 37       |


#### Extracción de características

#### Segmentación






| Ficha papel | Media | Mejora | Varianza | Mejora |
|-------------|-------|--------|----------|--------|
| Pulgar      | 163   | +6     | 31       | -5     |
| Índice      | 139   | +18    | 32       | -3     |



## Clasificador (Morpho)

Retorna un score relacionado con el FAR mediante:

$$s = 3500 - 500 \log(FAR/10^{-4})$$



|                                    | FAR=10e-3 | FAR=10e-5 |
|------------------------------------|-----------|-----------|
| Score deriv. fórmula               | 3000      | 4000      |
| Score deriv. análisis en base DNIC | 3125      | 4370      |

#### Relación entre matcheo y calidad

Se separan los dedos en tres calidades: buena, regular y mala

| (FAR=10e-3         | VR   | FRR   |
|--------------------|------|-------|
| mala vs mala       | 0.40 | 0.60  |
| regular vs regular | 0.91 | 0.09  |
| buena vs buena     | 0.99 | 0.008 |

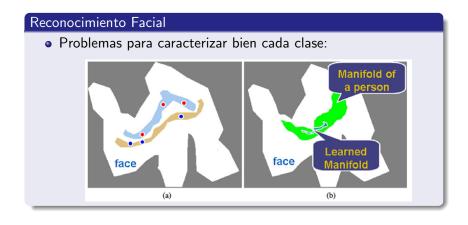
#### Identificación

Dos contextos bien distintos:

- Enrolamiento: se busca si la persona ya no está en la base de datos
- Identificación durante un procedimiento policial o judicial (indocumentado, NN, etc.)

En cualquier caso, el costo de NO encontrarlo si está es altísimo: se va a permitir un FAR no muy restrictivo

#### Desafíos para los próximos años

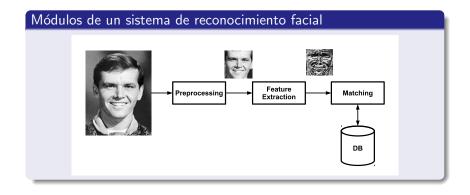

- Toma de huellas a bebés
- Base de huellas dactilares de 5 años
- Servicio de verificación de identidad Web
  - Problema: No se controla el input y por lo tanto la calidad
- Documento electrónico: Aplicación Match-On-Card
  - Se realiza a nivel del template
  - El FAR se determina al momento de personalizar el documento
  - El FAR actual es de 0.01
- Reconocimiento facial

#### Reconocimiento Facial

- Problemas del reconocimiento facial:
  - Gran variabilidad intra-clase
  - Similaridad inter-clase

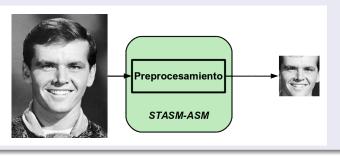


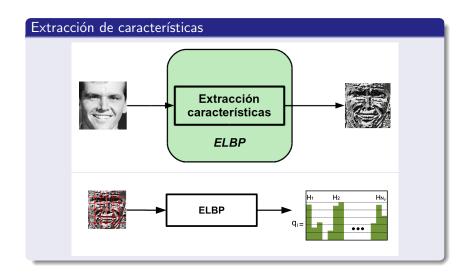





#### Reconocimiento Facial

- Muy pocas muestras por clase, la mayoría tiene una única imagen (1.746.189, aprox. 49%)
- Envejecimiento entre toma y toma (10 años en el caso normal)
- Pose e iluminación controlados
- Gran base de datos (agosto 2015):
  - 3.700.966 de registro de personas con al menos una foto
  - 7.352.339 de fotos en total


# Preguntas?


Javier Preciozzi: jpreciozzi@dnic.gub.uy



#### Pre-procesamiento

- Sensores: Cámaras fotográficas estándar (Olympus SP 350, Canon SX 110 IS, Kodak C533)
- Extracción de características: segmentación





#### Criterio de decisión

- Criterio basado en un modelo a contrario
- Idea: en lugar de buscar si alguien es un usuario genuino, se decide que es altamente probable que NO SEA impostor mediante la hipótesis a contrario
- Ventajas: evita la estimación de la distribución de probabilidad del evento esperado

#### Ejemplo

- Supongamos una base con 1000 personas
  - La clase impostor tiene 999000 elementos
  - La clase genuinos tiene 1000
- Por lo tanto será siempre mejor trabajar con la clase impostor que con la de genuinos

- Sea  $H_0$  el modelo de fondo.
- e es la observación de una variable aleatoria E.

#### Número de falsas alarmas

El (NFA) se define como la esperanza del número de ocurrencias del evento (e) bajo el modelo de fondo  $H_0$ .

Un evento se dice que es  $\varepsilon-$  significativo si

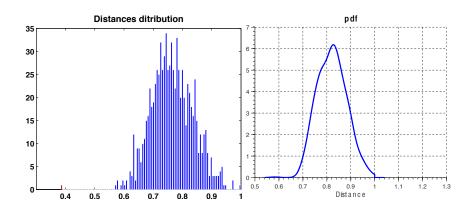
 $NFA(e) < \varepsilon$ .

• El NFA puede ser definida como sigue:

$$NFA'(E) = \mathcal{N} \cdot P(E \ge E|H_0) \tag{1}$$



#### Modelo a contrario


- Hipótesis  $\mathcal{H}_0$ : Las caras corresponden a diferentes personas
- Persona de consulta q
- $\bullet$  Persona en la base de datos  $g_i$
- Distancia asociada:  $D(q, g_i)$
- Probabilidad que la distancia entre  $q, g_i$  sea menor a un  $\delta$  en la hipótesis  $\mathcal{H}_0$ :

$$P(D(q,g_i) \leq \delta | \mathcal{H}_0) = \int_{-\infty}^{\delta} p_{q_i | \mathcal{H}_0}(x) dx$$

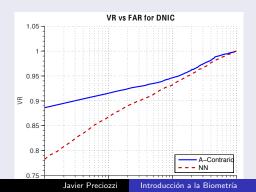
• donde  $p_{q_i|\mathcal{H}_0}$  es la función de densidad de probabilidad de las distancias de la persona q bajo la hipótesis  $\mathcal{H}_0$ 



• La pdf  $p_{q_i|H_0}$  se calcula directamente de los datos



En nuestro caso el evento significativo es que dos caras  $(q, g_j)$  corresponden a la misma persona. El *NFA* se define entonces como:


$$NFA(q_i, g_j) = N_Q(N_G - 1)P\left(D(q_i, g_j) \le \delta | H_0\right) \tag{2}$$

• donde  $N_Q$  and  $N_G$  son los tamaños del conjunto galería y de consulta respectivamente, y por lo tanto ,  $N_Q(N_G-1)$  corresponde a todas las posibles configuraciones del evento anterior

#### Ventajas de usar NFA

La definición del umbral  $\varepsilon$  en el modelo a contrario tiene varias ventajas:

- Permite controlar la performance del sistema desde el inicio
- El umbral se adapta automaticamente a la base de datos

